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We present a theory of the band-bending effects on two-dimensional �2D� carriers confined in a modulation-
doped square quantum well. We develop a tractable variational evaluation of several physical quantities that are
important in the theory of 2D systems. Analytic expressions of the envelope wave function and the 2D
screening form factor allow us to compute various electronic properties such as electrical mobility, density of
states in the presence or in the absence of magnetic fields, and Landau level broadening. We prove that in the
case of the interface roughness scattering, the band-bending effects lead to a peak in the channel-width
dependence of the mobility and a minimum in the Landau level broadening. Our modeling explains recent
measurements for a 2D hole gas.
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I. INTRODUCTION

As well known,1 the autocorrelation function �ACF� of
two-dimensional �2D� systems captures most of their fea-
tures, since this allows us to compute many electronic prop-
erties, e.g., electrical mobility and broadening of Landau lev-
els. The density of states of disordered systems is also given
in terms of the ACF within the path-integral approach based
on a cumulant or a semiclassical expansion.2,3 The ACF is
determined by important functions such as the envelope
wave function and the 2D screening function. Thus, the ACF
is specified by characteristics of the system under study, in
particular, by the shape of the potential well, i.e., the band
edge profile. In the flat-band model, the confining potential is
fixed merely by the potential barriers �band edge offsets�,
while in the bent-band model by the barriers and, moreover,
by some band-bending sources.

The band-bending effects on the electronic properties of
doped 2D systems were explored theoretically and experi-
mentally by a number of authors. It is well known1,4 that the
band bending is of vital importance for the formation of a
quantum well �QW� in heterojunctions. The existing theories
of the band-bending effects adopted, as usual, a variational
approach based on the Fang-Howard envelope wave
function,5 which enables a simple mathematics concerning
the quantum confinement. However, this function was used
successfully merely for the triangular QW in �bilayer� het-
erojunctions. When applied to the square �trilayer� QW, this
was used as an approximation only for describing the tem-
perature and carrier-density dependences, but to any degree,
inapplicable for describing the channel-width one.

It was believed4 that the variational approach to the band-
bending effects on quantum transport in square QWs is very
tedious to work with, so they were ignored, and the flat-band
model has been used so far.4,6,7 Hence, one could not explain
some experimental findings. The most striking is the exis-
tence of a sharp maximum in the channel-width dependence
of the hole mobility.8–13 Recently, we have shown14,15 that
scatterings related to interface roughness are very sensitive to
the band bending.

Therefore, our goal is to provide a theory of the band-
bending effects on the carriers confined in a modulation-
doped square QWs. In contrast to the previous belief, we try
to formulate the variational approach in an analytically trac-
table framework.

II. SINGLE-SIDE MODULATION-DOPED SQUARE
QUANTUM WELL

A. Variational wave function

The ACF for an unscreened disorder interaction is defined
as a configuration average of the 2D Fourier transform of its
potential U�q ,z�, which is weighted with an envelop wave
function �=��z� as follows: ��U�q��2�= �����U�q ,z�����2�, with
q as a 2D momentum in the in-plane. Thus, the band-
bending effects are included via the wave function, i.e., the
distribution of carriers.

We examine the effect from doping-induced band bending
on the carrier distribution in a square QW. A single-side
modulation doping gives rise to some band bending, so the
asymmetric modifications of this distribution are as follows:
an increase near the top �doping-side� interface �z�0� and a
decrease near the bottom one �z�0�. Thus, within a varia-
tional approach to the lowest subband of the square QW with
high enough potential barriers, we may take an asymmetric
wave function such that

��z� = �B��/Lcos��z/L�e−cz/L for �z� � L/2
0 for �z� � L/2,

� �1�

with L as the well width. Here, B and c are variational pa-
rameters to be determined. The normalization requires that

�

2
B2�1�c� = 1, �2�

where �1�c� is a simple function defined by Eq. �A3� in
Appendix. Thus, there is a single independent parameter, say,
c. As clearly seen from Eq. �1�, this parameter is a measure
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of the doping-induced band-bending effect on the carrier dis-
tribution.

B. Hartree potential

The envelop wave function of the ground-state subband
given by Eq. �1� is to minimize the total energy per particle.1

In the bent-band model, the Hamiltonian is determined by

H = T + Vb�z� + VH�z� , �3�

where T is the kinetic energy, Vb�z� and VH�z� are the barrier
and the Hartree potentials, respectively. The Hartree poten-

tial is specified by the distribution of ionized impurities NI�z�
and that of charge carriers p�z�. The doping profile NI�z� is
with a bulk density NI in the top barrier from a doping posi-
tion −zd to −zs, where zd=Ld+Ls+L /2 and zs=Ls+L /2, with
Ld and Ls as thicknesses of the doping and spacer layers,
respectively. The carrier profile is p�z�= ps���z��2, with a
sheet density ps and the wave function from Eq. �1�. The
charge neutrality claims that ps=NILd.

We solve the Poisson equation for the Hartree potential in
combination with the boundary conditions at z=−�:
�VH�−�� /�z=0, and VH�−��=EI with EI as the binding en-
ergy of an ionized impurity in the top barrier.16 As a result,
the Hartree potential is given by

VH�z� = EI +
4�e2

�L 	
0 for z � − zd

�NI/2��z + zd�2 for − zd � z � − zs

�NI/2��zd − zs��2z + zd + zs� for − zs � − L/2
�NI/2��zd

2 − zs
2� − ps
g�z� − zg+� − h−� for − L/2 � z � L/2

�NI/2��zd
2 − zs

2� − ps�h+ − h−� for z � L/2,
� �4�

where �L is the dielectric constant of the QW, and by defini-
tion,

g�z� =
�B2L

8
e−2cz/L� 1

c2 +
1

�c2 + �2�2

��c2 − �2�cos
2�z

L
− 2�c sin

2�z

L
�� �5�

and

h�z� = g�z� − zg��z� . �6�

Here, the prime stands for the differention with respect to z
and the subindices 	 for the values at z= 	L /2; for in-
stance, g+�= ��g /�z�z=+L/2.

C. Total energy per particle

We are dealing with the total energy per particle in the
lowest subband determined by the Hamiltonian given by
Eqs. �3� and �4�. As clearly seen from Eq. �4�, the Hartree
potential may be represented as a sum of two terms: VH�z�
=VI�z�+Vs�z�. The first term is to be regarded as the impurity
potential fixed by the doping profile, viz., their bulk density
NI and doping positions zd ,zs, while the second one as the
carrier potential fixed by their sheet density ps and their dis-
tribution, i.e., the variational parameters. As a result, for very
high-barrier QWs, the expectation value of the Hamiltonian
is defined as a function of the band-bending parameter such
that

E�c� = �T� + �VI� + �Vs� . �7�

The total energy per particle is given by a modification of
Eq. �7�, in which the average potential due to the carrier

distribution �Vs� is to be replaced with its half.1,4

The individual energies appearing in the total energy are
supplied in the following. The average kinetic energy is

�T� = −
�
2B2

4mzL
2 
�c2 − �2��1�c� + 2�c�1�c�� , �8�

where mz is the out-of-plane carrier effective mass of the
well layer and �n and �n with n as an integer are functions of
a variable defined simply by Eqs. �A3� and �A4�.

The average impurity potential is

�VI� = EI +
2�e2NI

�L
�zd

2 − zs
2� . �9�

The average carrier potential is

�Vs� = −
�3e2B4psL

4�L�c2 + �2���2

c
ec�1�c�

c3 − 6c2 + �2�c − 2�
c�c2 + �2�

− e−c��1�c�
�c

� +
1

c2 + �2�2c2 + �2 +
�4

c2 ��1�2c�

+
c2 − �2

2

�2�2c� − �0�2c�� − �c
�2�2c�

+ 2�1�2c���� . �10�

It is observed from Eqs. �7�–�10� that the band bending
parameter c is fixed not only by the carrier density, i.e., the
doping level, but also by the channel width.
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III. LOW-TEMPERATURE TRANSPORT AND QUANTUM
LIFETIMES

A. Basic equations

Within the linear transport theory, which ignores the mul-
tiple scattering effects, the transport ��t� and quantum ��q�
lifetimes at very low �zero� temperature are represented in
terms of the ACF for each disorder,6,17

1

�t
=

1

�2��2
EF
�

0

2kF

dq�
0

2�

d
q2

�4kF
2 − q2�1/2

��U�q��2�
�2�q�

�11�

and

1

�q
=

1

�2��2
EF
�

0

2kF

dq�
0

2�

d
2kF

2

�4kF
2 − q2�1/2

��U�q��2�
�2�q�

.

�12�

Here, q= �q ,� is the 2D momentum transfer by a scattering
event in the x-y plane �in polar coordinates�: q= �q�
=2kF sin�� /2�, with � as a scattering angle. The Fermi en-
ergy is given by EF=
2kF

2 /2m*, with kF=�2�ps as the Fermi
wave number and m* as the in-plane hole effective mass of
the well.

The dielectric function ��q� in Eqs. �11� and �12� takes
account of the screening of scattering potentials by the 2D
carriers. As usual, this is evaluated within the random phase
approximation,1

��q� = 1 +
qs

q
FS�q�
1 − G�q�� for q � 2kF, �13�

with qs=2m*e2 /�L
2 as the inverse 2D Thomas-Fermi
screening length. The local field corrections arising from a
many-body exchange effect in the in plane are included by
the function18 G�q�=q /2�q2+kF

2 .
The screening form factor FS�q� takes account of the ex-

tension of the particle state along the growth direction, given
by

FS�q� = �
−�

+�

dz�
−�

+�

dz��2�z��2�z��e−q�z−z��. �14�

The previous theories19,20 believed that it is too tedious to
calculate the screening function with a wave function such as
that in Eq. �1�, so an empirical formula has been used so far,
which is simpler than Eq. �14�, but still nonanalytic. With the
aid of our mathematical functions �n and �n, the calculation
is lengthy, however, straightforward. As a result, one may
achieve an exact analytic expression,

FS�t� = ��2B4/8�
FU�t� + FL�t�� , �15�

with t=qL as the dimensionless in-plane wave number. The
functions appearing here are defined as follows:

FU/L�t� = 	
1

c � t/2

e	�c�t/2��1�c 	 t/2� − �1�2c��

�
c � t/2

2
�2 + �c � t/2�2�

2e	�c�t/2��1�c 	 t/2� + �2�2c�

+ 2�1�2c� − �0�2c�� 	
�

2
�2 + �c � t/2�2�

�2�2c�

+ 2�1�2c�� , �16�

where the upper �lower� signs refer to the subindex U �L�. It
is interesting to note that in the absence of doping �c=0�, the
screening function given by Eqs. �15� and �16� is simplified
to the one for the flat-band model.6,7

B. Autocorrelation function for surface roughness scattering

To illustrate the band-bending effects on the electronic
properties, we calculate the transport and quantum lifetimes
limited by surface roughness scattering. As indicated,1 the
weighted potentials in wave vector space for scattering from
the rough interfaces are given in terms of the local values of
the wave function ��=��z= �L /2� by

U��q� = V0����2�q, �17�

with �q as a Fourier transform of the interface profile. For
high enough barriers V0, one may replace the wave function
in Eq. �17� by its derivative,

V0����2 =

2

2mz
���� �2. �18�

As dramatically warned,1,21 the use of the values of an
approximate �variational� wave function and its derivative at
an interface plane can cause serious errors in the calculation
of surface roughness scattering. Indeed, these local values
can lead to a wrong dependence, e.g., on carrier density, and
to surface roughness scattering too big by a factor of about 1
order of magnitude. The drawback is more severe in the case
when surface roughness scattering is dominant and, with
some recent attempts at structural optimization, the mobility
has been raised by merely a few times.22,23 For getting rid
thereof, we need a formula, in which the weighted scattering
potentials are given in terms of quantities that are insensitive
to the trial wave function, such as the maximum of a wave
function and some integrals of it on the z axis. The peak of
the wave function from Eq. �1� is located at the point z0
=�L, with �=−�1 /��arctan�c /��.

For the above-mentioned purpose, we integrate the one-
dimensional Schrödinger equation for a bound-state wave
function ��z� from z= �� to z=z0. As a result, we obtain

V0����2 = 
E�c� − VH�z0���2�z0� + �
��

z0

dz�2�z�
�VH�z�

�z
.

�19�

With the use of the wave function from Eq. �1�, we may
express the weighted scattering potentials of interest in an
analytic form,
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V0����2 = 
E�c� − VH�z0���2�z0�

�
�3e2B4ps

2�L�c2 + �2���2e−c

c
�1�	c, 	 ��

− �2c +
�2

c
��1�	2c, 	 �� −

c

2

�2�	2c, 	 ��

− �0�	2c, 	 ��� 	
�

2

�2�	2c, 	 ��

+ 2�1�	2c, 	 ���� . �20�

Here, as in Eq. �19�, the upper �lower� signs refer to the top
�bottom� interface.

It is worth mentioning the merits of Eqs. �19� and �20�.
First, these are exact and applicable to any bound state in any
QW, i.e., a two-interface �trilayer� structure of any depth V0.
Second, they enable a reduction of the errors associated with
the use of an approximate wave function. Third, they are
convenient for use in the case of infinite QWs since their
right-hand side remains definite, whereas the left-hand one
becomes indefinite at this limit �V0→� and ��→0�.

IV. RESULTS AND CONCLUSIONS

We have carried out numerical calculations to evaluate the
band-bending effects from single-side modulation doping on
the carrier distribution �Fig. 1�, the 2D screening �Fig. 2�,
and their quantum transport �Figs. 3 and 4� in square QWs.
The quantum transport is limited by interface roughness with
a Gaussian profile. From the results obtained, we may draw
the following conclusions.

�i� As shown in Fig. 1, due to band bending, the hole
distribution is strongly modified, increased near the top in-
terface and decreased near the bottom one. The modification
is found increased with a rise of the sheet hole density, i.e.,
the doping level and of the channel width.

�ii� As seen from Fig. 2, the flat-band model can remark-
ably underestimate the 2D screening. The bent-band screen-
ing is raised with a rise of the channel width and of the
doping level.

�iii� In accordance with the above conclusions, in the
bent-band theory, the surface roughness scattering of holes
from the top interface is, as seen from Fig. 3, remarkably
enhanced, so dominating over that from the bottom one. The
total two-dimensional hole gas �2DHG� mobility is, follow-
ing the Matthiessen rule, much lower than the flat-band one
�up to more than 1 order of magnitude�.

FIG. 1. Ground-state wave function ��z� for a hole in the GaAs
square QW in the bent-band �solid� and flat-band �dashed line�
models for �a� a channel width L=150 Å and sheet carrier densities
ps=1011, 1012, and 1013 cm−2 and �b� a sheet carrier density ps=5
�1011 cm−2 and channel widths L=100, 150, and 200 Å.

FIG. 2. Screening form factor FS�t� vs the dimensionless mo-
mentum t for 2DHG in the GaAs square QW in the bent-band and
flat-band models. The interpretation is the same as in Fig. 1 with
diverse parameters.
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�iv� The band bending in square QWs causes not only a
reduction in the magnitude of the 2DHG mobility as stated
above but also an alteration of its functional dependence on
the channel width, viz., a nonmonotonic evolution with a
sharp peak instead of a monotonic increase in the flat-band
case. Our theory provides a satisfactory description of the
recently measured12 dependence of the 2DHG mobility of a
GaAs channel on its width �inset of Fig. 3�.

Following Ref. 13, the peak in Fig. 2 is located at a larger
well width �Lmax�300 Å�. However, this seems to be im-
plausible, since this was inferred with the use of a hole mass
m* measured by cyclotron resonance. The mass thus ob-
tained may be a spintronic effective one, so differs from the
zero-field mass.24

It should be mentioned that the peak of the 2DHG mobil-
ity in modulation-doped square QWs of diverse channels
was experimentally found in 1993 by Xie et al.8 and then by
a number of authors.9–13 However, up to date, no satisfactory
explanation has been available, so its nature still remains as a
challenge in the transport theory for square QWs.

�v� In difference from the previous belief,11–13 in the bent-
band theory, the transport and quantum lifetimes of two-
dimensional electron gas �2DEG� in Fig. 4 also exhibit a
sharp peak for a high enough electron density �ns
�1011 cm−2�. Thus, the broadening of Landau levels, given
by ��
 /�q, shows a corresponding minimum. As seen from
the inset, the bent-band inverse transport lifetime �t

−1 at L
�160 Å is in agreement with the recent data better than that
in the flat-band model even with finite barriers.25,26

�vi� It is found that the peak shape, viz., its height and
position, in the channel-width dependence of both lifetimes
is fixed by some parameters, especially the doping level.
With its increase, the peak becomes sharper and located at a
smaller width, while with its decrease, the peak becomes
smeared out or even disappears, the band-bending effect be-
ing negligibly weak.

V. SUMMARY

To summarize, within a variational approach, we obtain
analytic expressions for the envelop wave function and the
2D screening function for bent-band square QWs. These
form a basis for calculating their properties such as electrical
transport, density of states, and broadening of Landau levels.

The band-bending effects are of more importance with an
increase of the doping level and of the channel width. The
bent-band system exhibits some features.

We prove that the band bending leads to a peak in the
channel-width dependence of both transport and quantum
lifetimes, whose existence has not been explained so far. The
peak is reproduced for 2DHG as detected experimentally
and, further, predicted for 2DEG.

We derive a special formula allowing to exactly calculate
surface roughness scattering with the use of an approximate
wave function. Our theory is clearly applicable to other
band-bending sources, e.g., external normal electric field.

APPENDIX: AUXILIARY FUNCTIONS

In this Appendix, we introduce some mathematical func-
tions, which make up a tool helpful to the description of the
modulation-doping effects in an infinite square QW. These
are defined as algebraic combinations of elementary func-
tions, given by

�n��;�� =
2

L
�

−L/2

�L

dz cos2�n�z/L�e−2�z/L

=
e� − e−2��

2�
+

1

2��2 + n2�2�

�− 1�n�e�

+ e−2���n� sin 2�n� − � cos 2�n��� �A1�

and

FIG. 3. Mobilities limited by surface roughness scattering with a
roughness amplitude �=5 Å and a correlation length �=44 Å for
2DHG in a GaAs QW �m*=0.112me� vs channel width L at a hole
density ps=1.1�1011 cm−2 in the bent-band �solid� and flat-band
�dashed line� models. The mobility limited by scattering from the
top �bottom� interface is labeled t �b�. The 0.3 K measured data
�Ref. 12� are marked by squares.

t

FIG. 4. Bent-band transport �t and quantum �q lifetimes limited
by a interface profile with �=4.5 Å and �=40 Å for 2DEG in a
GaAs QW �m*=0.067me� vs channel width L at an electron density
ns=5�1011 cm−2. The inset shows �t

−1 at ns=5.8�1010 cm−2 in the
bent-band �solid� and the finite-barrier flat-band �dashed line� mod-
els, and the 0.3 K measured data �Ref. 25�.
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�n��;�� =
1

L
�

−L/2

�L

dz sin�2n�z/L�e−2�z/L

=
1

2��2 + n2�2�

�− 1�nn�e� − e−2���n� cos 2�n�

+ � sin 2�n��� , �A2�

with n=0,1 ,2 , . . .. as an integer.

For �=1 /2, the functions are rewritten as follows: �n���
=�n�� ;1 /2� and �n���=�n�� ;1 /2�, such that

�n��� =  1

�
+

�− 1�n�

�2 + n2�2�sinh � �A3�

and

�n��� = �− 1�nn�
sinh �

�2 + n2�2 . �A4�
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